\qquad

Review 1

Solve the equations.
1.) $a-3.2=5.5$
2.) $m-\frac{3}{18}=\frac{11}{18}$
3.) $2.3 g=7.13$
4.) $\frac{1}{4}+b=\frac{3}{4}$
5.) $\mathrm{c}-56=57$
6.) $1.9+y=4.8$
7.) $55=11 x$
8.) $\frac{s}{7}=12$
9.) $4.7=\frac{r}{5}$
10.) $\frac{2}{5}=\frac{2}{10}+k$

For each Real World Problem, write and solve an equation to answer the question.

11.) Ali was paid $\$ 75$ for mowing a neighbor's yard. This is one fourth of the amount of money she earned all summer. Write and solve an equation to find how much money, m, Ali earned all summer?

Equation \qquad Money earned \qquad
12.) Zaira spent 55 hours in 2 weeks working on a science project. She worked 32 hours the first week. Write and solve an equation to find the amount of time, t, she spent working the second week.

Equation \qquad Time spent working \qquad
13.) The area of a swimming pool is 300 square feet. The width of the pool is 15 feet. Write and solve an equation to find the length, x, of the pool?

Equation \qquad Length of pool \qquad
14.) For two days in a row, Winston rescued tadpoles from a puddle. He rescued 54 on Friday. This is 17 less than the number he rescued on Saturday. Write and solve an equation to find how many tadpoles, t, he rescued on Saturday.

Equation \qquad Number of tadpoles \qquad

FUNDRAISING A school is raising money by selling calendars for $\$ 20$ each. Mrs. Hawkins promised a party to whichever of her English classes sold the most calendars over the course of four weeks. Use the table to answer Exercises 15 \& 16.
15.) Write and solve an equation to show the average number of calendars, c, her 3rd period class sold per week during the four-week challenge.

Equation \qquad
Number of calendars \qquad

Mrs. Hawkins' Fundraising Challenge	
Class	Number of Calendars Sold
1st Period	60
2nd Period	123
3rd Period	89
4th Period	126

16.) What was the average number of calendars, c, sold in a week by all of her classes?
\qquad
\qquad

